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Abstract

Modern AI systems, especially those interacting with the physical world, increas-
ingly require real-time performance. However, the high latency of state-of-the-art
generalist models, including recent vision-language-action models (VLAs), poses
a significant challenge. While action chunking has enabled temporal consistency
in high-frequency control tasks, it does not fully address the latency problem,
leading to pauses or out-of-distribution jerky movements at chunk boundaries.
This paper presents a novel inference-time algorithm that enables smooth asyn-
chronous execution of action chunking policies. Our method, real-time chunking
(RTC), is applicable to any diffusion- or flow-based VLA out of the box with no
re-training. It generates the next action chunk while executing the current one,
“freezing” actions guaranteed to execute and “inpainting” the rest. To test RTC, we
introduce a new benchmark of 12 highly dynamic tasks in the Kinetix simulator,
as well as evaluate 6 challenging real-world bimanual manipulation tasks. Results
demonstrate that RTC is fast, performant, and uniquely robust to inference delay,
significantly improving task throughput and enabling high success rates in precise
tasks—such as lighting a match—even in the presence of significant latency. See
https://pi.website/research/real_time_chunking for videos.
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Figure 1: Top: Real-time chunking (RTC) enables the robot to perform highly dexterous and dynamic tasks,
such as lighting a match—even in the presence of inference delays in excess of 300 milliseconds, corresponding
to more than 30% of the model’s prediction horizon. Bottom: RTC performs the same robot motion 20% faster
than synchronous inference [5, 29, 8, 23, 30, 58], and smoother than all competing methods, including temporal
ensembling [67]. The shown positions, velocities, and accelerations correspond to the shoulder joint of one arm,
and are taken from the first 10 seconds of a real autonomous match-lighting rollout.
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1 Introduction

As AI systems have become more capable, they have also interacted more and more directly with their
environment. Whether they’re executing terminal commands [44], playing Pokémon on livestream
[19], or browsing the web on your behalf [64], recent advances—driven primarily by large-scale
deep learning—have enabled these systems to increasingly control, rather than merely process, the
vast heterogeneity of the outside world. Embodied agents, where machine learning models directly
control real, physical constructs, are perhaps the quintessential example. The same advances fueling
agentic language and vision models are also making great strides in physical intelligence on platforms
ranging from humanoid robots [4] to autonomous cars [59].

Cyber-physical systems, unlike chatbots and image generators, always operate in real time. While a
robot is “thinking”, the world around it evolves according to physical laws. Thus, delays between
inputs and outputs have a tangible impact on performance. For a language model, the difference
between fast and slow generation is a satisfied or annoyed user; for a robot action model, on the other
hand, it could be the difference between a robot handing you a hot coffee or spilling it in your lap.

Unfortunately, the effectiveness of modern large-scale machine learning comes with high latency
as an unavoidable side effect. Large language models (LLMs), vision-language models (VLMs),
and vision-language-action models (VLAs)—the last referring to a class of models designed for
visuomotor control—have billions of parameters [8, 29, 5, 4, 57]. These models are not only slow to
run, but also require heavy-duty hardware that is difficult to attach to edge devices such as mobile
robots, adding even more overhead for remote inference. Edge hardware will improve over time, but
as robot datasets grow in size, so will the best VLAs [27].

Thus, applying large models to real-time control problems effectively will require some form of
asynchronicity: that is, a model must think about its future actions while executing a previous one.
Action chunking [67, 32, 11], where a model outputs and executes a sequence of multiple actions for
each inference call, presents a partial solution. Although action chunking has already achieved many
state-of-the-art results in dexterous manipulation [5, 4, 57], it still suffers from the latency problem.
Chunking sacrifices the reactivity of a system to external stimuli and also introduces discontinuities
in the transition points between chunks, as adjacent chunks may jump between different modes
(or “strategies”) from the learned action distribution. Such anomalies are especially harmful to
learning-based systems, as they produce a distribution shift in dynamics that the model is likely not
equipped to handle. Naive smoothing strategies, such as averaging multiple predictions together [67],
are not guaranteed to produce valid actions and may only make matters worse (e.g., see Figure 2).

A good real-time system must produce a consistent and continuous control signal, incorporating
the latest observations without perturbing the environment’s natural dynamics or the model’s ability
to produce correct actions. In this work, we present real-time chunking (RTC), which poses
asynchronous action chunking as an inpainting problem. Our algorithm generates the next action
chunk while executing the previous one, freezing the actions that are guaranteed to be executed (due
to inference delay) and “inpainting” the rest. It is applicable to any diffusion- [21] or flow-based [35]
VLA, and operates purely at inference time, requiring no changes to existing training recipes.

Our contributions are as follows. First, we present a novel system for asynchronous, real-time
inference of action chunking diffusion- or flow-based policies for continuous control. Since standard
simulation benchmarks are quasi-static—and have mostly been saturated with pseudo open-loop
inference strategies [11]—we devise a new benchmark based on the Kinetix simulator [42] consisting
of 12 highly dynamic manipulation and locomotion tasks. In the real world, we evaluate RTC on 6
challenging bimanual manipulation tasks using the π0.5 VLA [23] as the base policy. Across both
simulation and the real world, we demonstrate that RTC is fast and performant; it is uniquely robust
to inference latency, even in highly precise tasks such as lighting a match (Figure 1), and it achieves
greatly improved task throughput on all real tasks.

2 Related Work

Action chunking and VLAs. Inspired in part by human motor control [32], action chunking has
recently emerged as the de facto standard in imitation learning for visuomotor control [67, 11].
Learning to generate action chunks from human data requires expressive statistical models, such
as variational inference [67, 18], diffusion [11, 12, 68, 67, 45, 58], flow matching [5, 6], vector
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quantization [33, 3, 43], or byte-pair encoding [46]. Recently, some of these methods have been
scaled to billions of parameters, giving rise to VLAs [7, 13, 29, 5, 70, 10, 9, 69, 23, 46, 36], a class
of large models built on pre-trained vision-language model backbones. With the capacity to fit ever-
growing robot datasets [13, 28, 61, 14, 40, 26], as well as Internet knowledge from vision-language
pre-training, VLAs have achieved impressive results in generalizable robot manipulation.

Reducing inference latency. A natural approach to improve the real-time capabilities of a model is to
simply speed it up. For instance, consistency policy [48] distills diffusion policies to elide expensive
iterative denoising. Streaming diffusion policy [22] proposes an alternative training recipe that allows
for very few denoising steps per controller timestep. Kim et al. [30] augment OpenVLA [29] with
parallel decoding to elide expensive autoregressive decoding. More broadly, there is a rich literature
on optimizing inference speed, both for diffusion models [51, 37, 55, 16] and large transformers in
general [31, 24, 34]. Unfortunately, these directions cannot reduce inference cost below one forward
pass. So long as this forward pass takes longer than the controller’s sampling period, other methods
will be needed for real-time execution.

Inpainting and guidance. There is a rich literature on image inpainting with pre-trained diffusion
and flow models [47, 54, 39, 41]. In our work, we incorporate one such method [47] into our
novel real-time execution framework with modifications (namely, soft masking and guidance weight
clipping) that we find necessary for our setting. For sequential decision-making, Diffuser [25]
pioneered diffusion-based inpainting for following state and action constraints in long-term planning,
though their inpainting method is not guidance-based. Diffuser and other work [63, 1] have also
guided diffusion models with value functions to solve reinforcement learning (RL) problems. Our
work is distinct in that it is the first to apply either inpainting or guidance to real-time control.

Real-time execution. Real-time control has been studied long before the advent of VLAs. Similar
to action chunking, model predictive control (MPC; [50]) generates plans over a receding time
horizon; like our method, it parallelizes execution and computation, and uses the prior chunk to
warm-start planning for the next. Though recent works combining learning methods with MPC have
demonstrated real-time control capabilities in narrow domains [52, 20], their reliance on explicit
dynamic models and cost functions makes their application difficult in unstructured settings, where
VLAs have gained prominence. Separately, in reinforcement learning, a variety of prior works
have developed time-delayed decision-making methods [56, 15, 53, 62, 65, 66]. However, these
approaches are not always applicable to imitation learning, and none of them leverage action chunking.
Most recently, hierarchical VLA designs [57, 4] have emerged where the model is split into a System
2 (high-level planning) and System 1 (low-level action generation) component. The System 2
component contains the bulk of the VLA’s capacity and runs at a low frequency, while the System
1 component is lightweight and fast. This approach is orthogonal to ours, and comes with its own
tradeoffs (e.g., limiting the size of the System 1 component and requiring its own training recipe).

Bidirectional Decoding. The most closely related prior work is Bidirectional Decoding (BID;
[38]), which enables fully closed-loop control with pre-trained action chunking policies via rejection
sampling. While Liu et al. [38] do not consider inference delay, the BID algorithm can be used to
accomplish the same effect as our guidance-based inpainting. We compare to BID in our simulated
benchmark, finding that it underperforms RTC while using significantly more compute.

3 Preliminaries and Motivation

We begin with an action chunking policy denoted by π(At|ot), where At = [at,at+1, ...,at+H−1]
is a chunk of future actions, ot is an observation, and t indicates a controller timestep. We call H
the prediction horizon. When action chunking policies are rolled out, the first s ≤ H actions from
each chunk are executed, and then a new chunk is produced by the policy. We call s the execution
horizon; often it is shorter than the prediction horizon, but still much greater than 1 (e.g., s ≈ H/2
[11, 5, 23]). Chunked execution ensures temporal consistency at the expense of reactivity. A long
execution horizon reduces a policy’s responsiveness to new information, while a short one increases
the likelihood of mode-jumping, jerky behavior resulting from discontinuities between chunks.

In this paper, we consider policies trained with conditional flow matching [35], though our method
can also be used with diffusion policies by converting them to flow policies at inference time [47, 17].
To generate an action chunk from a flow policy, random noise A0

t is first sampled from a standard
Gaussian, and then the flow’s velocity field, vπ (a learned neural network) is integrated from τ = 0
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to 1 using the update rule

A
τ+ 1

n
t = Aτ

t +
1

n
vπ(A

τ
t ,ot, τ), (1)

where τ ∈ [0, 1) denotes a flow matching timestep, and n determines the number of denoising steps.
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Figure 2: An illustration of a typical bifurcation be-
tween consecutive chunks. Inference is started between
timesteps 3 and 4. The original chunk that was execut-
ing, {at} (black), had planned to go above the obstacle
while the newly generated chunk {a′

t} (red) goes be-
low the obstacle. However, {a′

t} is not available until
d = 7 steps later. A naive asynchronous algorithm
might jump from a10 to a′

11, inducing a very high, out-
of-distribution acceleration. Temporal ensembling [67],
i.e., interpolating between chunks, reduces the acceler-
ation but produces poor actions.

Now, let ∆t be sampling period of a controller,
i.e., the duration of a controller timestep, and let
δ be the time it takes for the policy to generate
an action chunk. We define d := ⌊δ/∆t⌋ and
call this quantity the inference delay, correspond-
ing to number of controller timesteps between
when ot is received and when At is available.1
If d = 0, then inference can be performed be-
tween two timesteps without any interruption.
However, this is near impossible to achieve with
modern VLAs. For example, with an NVIDIA
RTX 4090 GPU, the 3 billion parameter π0 VLA
spends 46ms on the KV cache prefill alone, be-
fore any denoising steps [5], and targets a 50Hz
control frequency (∆t = 20ms). Run in remote
inference for mobile manipulation, π0 lists 13ms
of network latency, in perfect conditions with
a wired connection. In a more realistic setting,
the network overhead alone could easily exceed
20ms. Kim et al. [30], who optimize the 7B
OpenVLA model [29] specifically for inference
speed, achieve no better than 321ms of latency
on an NVIDIA A100 GPU.

When d > 0, chunked execution becomes more complex. Naive synchronous inference, the default in
many prior works [5, 29, 8, 23, 30, 58], introduces visible pauses between chunks that not only slow
down execution but also change the dynamics of the robot, introducing distribution shift between
training and evaluation. The first requirement of a real-time system is asynchronous execution, where
inference is started early so that an action is guaranteed to be available at every timestep.

Let at′|t denote the (t′ − t)-th action of chunk At, generated from observing ot. If A0 is currently
executing, and we wish to switch chunks at step j, then an asynchronous algorithm must start
inference at j − d. However, since the policy cannot know what will happen between steps j − d
and j while generating Aj−d, the transition point between aj−1|0 and aj|j−d may be arbitrarily
discontinuous and out-of-distribution. Similar to a too-short execution horizon, this strategy leads to
jerky behavior that is worsened dramatically with higher delays; see Figure 2.

4 Real-Time Chunking via Inpainting

The key challenge in real-time execution is to maintain continuity between chunks. By the time a new
chunk is available, the previous one has already been executed partway, and therefore the new chunk
must be “compatible” with the previous one. At the same time, the new chunk should still incorporate
new observations, so that the policy does not lose the ability to react and make corrections.

Our key insight is to pose real-time chunking as an inpainting problem. To make the new chunk
“compatible”, we must use the overlapping timesteps where we have access to the remaining actions of
the previous chunk. The first d actions from the new chunk cannot be used, since those timesteps will
have already passed by the time the new chunk becomes available. Thus, it makes sense to “freeze”
those actions to the values that we know will be executed; our goal is then to fill in the remainder of
the new chunk in a way that is consistent with this frozen prefix (see Figure 3), much like inpainting a
section of an image that has been removed. We describe this basic inpainting principle in Sec. 4.1. In
Sec. 4.2, we introduce a soft masking extension that is critical for full cross-chunk continuity; finally,
we describe our full real-time chunking system in Sec. 4.3.

1For simplicity, we do not consider delays or synchronization issues at the sub-timestep level; we assume
that the low-level controller provides ot at the same instant that at−1 is consumed.
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Figure 3: A diagram illustrating how action generation attends to the previous action chunk in real-time chunking.
If inference starts after the execution of a−1 and the inference delay is d = 4, then the newly generated chunk
will not be available until after a3 is consumed. Therefore, a0:3 are “frozen” and are attended to with a full
guidance weight of 1. In the intermediate region, a4:10, actions from the previous chunk are available but may be
updated, since inference will have finished before a4 is needed. This region is attended to with an exponentially
decreasing guidance weight. Finally, the last s = 5 actions are beyond the end of the previous chunk, and need
to be freshly generated. The execution horizon, s, is a hyperparameter constrained by d ≤ s ≤ H − d.

4.1 Inference-Time Inpainting with Flow Matching

Inpainting is a known strength of iterative denoising frameworks such as diffusion and flow matching.
We build on the training-free image inpainting algorithm from Pokle et al. [47], which is itself based
on pseudoinverse guidance (ΠGDM; [54]). The algorithm operates by adding a gradient-based
guidance term to the learned velocity field v at each denoising step (Equation 1) that encourages the
final generation to match some target value, Y, which is a corrupted version of the desired result.
In the case of image inpainting, the corruption operator is masking, Y is the masked image, and
the desired result is a full image consistent with Y in the non-masked areas. The ΠGDM gradient
correction, specialized to our setting, is given by

vΠGDM(Aτ
t ,ot, τ) = v(Aτ

t ,ot, τ) + min

(
β,

1− τ

τ · r2τ

)(
Y − Â1

t

)⊤
diag(W)

∂Â1
t

∂Aτ
t

(2)

where Â1
t = Aτ

t + (1− τ)v(Aτ
t ,ot, τ), (3)

r2τ =
(1− τ)2

τ2 + (1− τ)2
. (4)
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g
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Figure 4: A comparison of naive in-
painting (hard masking) and our pro-
posed soft masking method: note
that hard masking does not match the
frozen region very well and produces
faster changes in direction.

Â1
t is an estimate of the final, fully denoised action chunk and

W is the mask. We are abusing notation by treating Y, At, and
W as vectors of dimension HM where M is the dimension of
each action. Thus, the guidance term is a vector-Jacobian prod-
uct and can be computed using backpropagation. The guidance
weight clipping, β, is our addition; we found that without it, the
algorithm became unstable with the small number of denoising
steps commonly used in control problems (see A.2 for ablation).

4.2 Soft Masking for Improved Cross-Chunk Continuity

In practice, naively inpainting using only the first d timesteps of
the previous action chunk is often insufficient to ensure that the
new chunk takes a consistent strategy, particularly when d is small
(e.g., see Figure 4). The ΠGDM correction is not perfect, and a
small d leads to a weak guidance signal, which can allow for the
new chunk to still switch strategies and cause discontinuities. Our solution, illustrated in Figure 3, is
to give our policy more cross-chunk continuity by considering not just the first d overlapping actions,
but all H − s overlapping actions. We do this via soft masking, setting W to real-valued weights
rather than 1s and 0s. The first d actions get a weight of 1; the last s actions of the new chunk do not
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overlap with the previous chunk, so they get a weight of 0; the actions in between get weights that
exponentially decay from 1 to 0, accounting for the fact that actions further in the future should be
treated with more uncertainty. The resulting expression for W is given by

Wi =


1 if i < d

ci
eci−1
e−1 if d ≤ i < H − s

0 if i ≥ H − s

where ci =
H − s− i

H − s− d+ 1
, i ∈ {0, . . . ,H − 1}. (5)

Intuitively, W modulates the “attention” paid to each corresponding action from the previous chunk.

4.3 Real-Time Chunking

We present our full real-time chunking system in Algorithm 1 (complemented by Figure 3). The
controller interfaces with our algorithm via GETACTION, which is called every ∆t to consume an
action at−1 and provide the next observation ot. The INFERENCELOOP runs in a background thread
so that an action is always available. It forecasts the next delay, d, by keeping a buffer of past
delays. The execution horizon, s, can change from chunk to chunk; the user provides a minimum
desired horizon, smin, and the actual horizon for a given chunk is max(d, smin) where d is the delay
encountered when computing the next chunk. Finally, the algorithm describes the inpainting with soft
masking procedure in GUIDEDINFERENCE, which explicitly defines a denoising function (Eq. 3) and
computes a vector-Jacobian product, which can be done with reverse-mode autodifferentiation [2].

Algorithm 1 Real-Time Chunking
Require: flow policy π with prediction horizon H , minimum execution horizon smin, mutex M, condition

variable C associated with M, initial chunk Ainit, initial delay estimate dinit, delay buffer size b, number of
denoising steps n, maximum guidance weight β

1: procedure INITIALIZESHAREDSTATE ▷ Initialize mutex-protected shared variables
2: t = 0; Acur = Ainit, ocur = null

3: function GETACTION(onext) ▷ Called at an interval of ∆t by controller
4: with M acquired do
5: t = t+ 1
6: ocur = onext
7: notify C
8: return Acur[t− 1]

9: procedure INFERENCELOOP ▷ Run inference in a looping background thread
10: acquire M
11: Q = new Queue([dinit], maxlen=b) ▷ Holds a limited buffer of past inference delays
12: loop
13: wait on C until t ≥ smin
14: s = t ▷ s is the number of actions executed since last inference started
15: Aprev = Acur[s, s+ 1, . . . , H − 1] ▷ Remove the s actions that have already been executed
16: o = ocur
17: d = max(Q) ▷ Estimate the next inference delay conservatively
18: with M released do
19: Anew = GUIDEDINFERENCE(π,o,Aprev, d, s)

20: Acur = Anew ▷ Swap to the new chunk as soon as it is available
21: t = t− s ▷ Reset t so that it indexes into Anew
22: enqueue t onto Q ▷ Record the observed delay

23: function GUIDEDINFERENCE(π,o,Aprev, d, s)
24: compute W using Eq. 5; right-pad Aprev to length H; initialize A0 ∼ N (0, I)
25: for τ = 0 to 1 with step size 1/n do
26: f

Â1 = A′ 7→ A′ + (1− τ)vπ(A
′,o, τ) ▷ Define denoising function (Eq. 3)

27: e =
(
Aprev − f

Â1(A
τ )
)⊤

diag(W) ▷ Weighted error term from Eq. 2

28: g = e ·
∂f

Â1

∂A′

∣∣∣
A′=Aτ

▷ Compute vector-Jacobian product from Eq. 2 via autodiff

29: Aτ+ 1
n = Aτ + 1

n

(
vπ(A

τ ,o, τ) + min
(
β, 1−τ

τ ·r2τ

)
g
)

▷ Integration step (Eq. 1)
return A1
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5 Experiments

In our experiments, we aim to answer the following questions. First, how does RTC compare to
existing methods in highly dynamic and stochastic environments, and under increasing inference
delays? Second, how important is soft masking (Sec. 4.2) to RTC? Third, how does RTC affect the
performance and speed of real-world dexterous robots?

We first evaluate RTC using a benchmark of 12 highly dynamic and stochastic environments in the
Kinetix [42] simulator. We use this benchmark to compare the performance of RTC to other methods
under simulated inference delays, as well as investigate the effect of soft masking. Then, using the
π0.5 VLA [23] as the base model, we evaluate the performance and speed of RTC on 6 challenging
bimanual dexterous manipulation tasks, including 2 mobile manipulation tasks (see Figure 6).

5.1 Simulated Benchmark

Most simulated imitation learning benchmarks are quasi-static, and standard chunked execution
with a long enough execution horizon can achieve near-perfect success rates [11]. We instead create
a benchmark of 12 dynamic tasks in Kinetix [42], which uses force-based control, so inference
delay necessitates asynchronous execution (there is no concept of “holding position”). We select 10
existing environments and create 2 new ones such that all environments involve dynamic motions
like throwing, catching, and balancing. To simulate imperfect actuation, we add Gaussian noise to
the actions, making closed-loop corrections crucial for success.

Setup. To generate data for imitation learning, we first train expert policies using RPO [49] and a
binary success reward. For each environment, we train 6 expert policies with different seeds and
then generate a 1M transition dataset with a different policy selected each episode. We then train
action chunking flow policies with a prediction horizon of H = 8 and a 4-layer MLP-Mixer [60]
architecture for 32 epochs. We report binary success rates with 2048 rollouts per data point, and
simulate delays between 0 (fully closed-loop) and 4 (the maximum supported when H = 8).

Baselines. We compare against the following baselines:
• Naive async. This strategy does not pay attention to the previous action chunk at all when

generating a new one, naively switching chunks as soon as the new one is ready.
• Bidirectional decoding (BID; [38]). This strategy uses rejection sampling to keep continuity

across chunks. We use a batch size of N = 32, mode size of K = 3, and a checkpoint trained for
8 epochs as the weak policy.

• Temporal ensembling (TE; [67]). This strategy involves keeping a buffer of predicted action
chunks and executing an average of all actions predicted for a particular timestep.

Results. Figure 5 shows the simulated results. In the delay plots (right): TE performs poorly across
the board, even with an inference delay of d = 0, illustrating the multi-modality of our benchmark—
averages of valid actions are not necessarily valid. RTC shows the most robustness to inference
delays, outperforming BID, and the gap widens with increasing delay; note that BID uses significantly
more compute than RTC by sampling batches of 64 action chunks, 32 from a strong model and 32
from a weak model. Additionally, we find that hard masking somewhat underperforms soft masking,
particularly when d is smaller, supporting our claims in Sec. 4.2. Finally, in the execution horizon
plot (left), we find that thanks to its continuity across chunks, RTC is better able to take advantage of
closed-loop corrections, always performing better with a decreasing execution horizon.

5.2 Real-World Results

Next, we deploy our full real-time chunking system to the real world. We use the π0.5VLA [23] as our
base policy, and evaluate RTC on a bimanual system with two 6-DoF arms and parallel jaw grippers.
Unlike our simulated benchmark, the robots use position control, and so synchronous inference—
stopping between chunks—is a reasonable default strategy, used in many prior works [5, 23, 30, 46].
Our goal is to improve upon synchronous inference in a combination of both performance and speed.

Setup. We use π0.5 (H = 50, ∆t = 20ms) with n = 5 denoising steps, giving a model latency of
76ms for the baselines and 97ms for RTC. We use remote inference over LAN, which adds 10-20ms
of latency, giving a starting inference delay around d ≈ 6 for RTC. However, we would like to
understand how the system behaves with higher inference latencies, simulating, e.g., scaling up the
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Figure 5: Top left: Kinetix environments; each involves getting a green object on the left to touch a blue one on
the right. Bottom left: Execution horizon vs. solve rate with a fixed inference delay of 1. Only RTC and BID
take full advantage of faster updates, showing strictly increasing performance with decreasing execution horizon.
Right: Inference delay vs. solve rate with a fixed execution horizon of s = max(d, 1). RTC outperforms all
baselines. Furthermore, soft masking (Sec. 4.2) improves performance at lower inference delays and execution
horizons. Each data point represents 2048 trials, and 95% Wilson score intervals are shaded in.

model size or running inference on a distant cloud server. Thus, we also evaluate all methods with
+100ms and +200ms of injected latency, corresponding to d ≈ 11 and d ≈ 16, respectively.

Figure 6: The six real-world tasks, including
2 mobile manipulation tasks. See the blog
post for videos.

Tasks and scoring. Each episode gets an integer score cor-
responding to how many substeps of the task it completed
successfully. We evaluate the following tasks:

• Light candle (5 steps, 40s cutoff). Pick up a match and
matchbox, strike the match, use it to light a candle,
and drop it in a bowl.

• Plug ethernet (6 steps, 120s cutoff). Pick up the end of
an ethernet cable, reorient it, plug it into a server rack,
and repeat the process for the other end.

• Make bed, mobile (3 steps, 200s cutoff). Move the
corner of a blanket and 2 pillows from the foot to the
head of a bed.

• Shirt folding (1 step, 300s cutoff). Fold a shirt from a
flattened position.

• Batch folding (4 steps, 300s cutoff). Take a varied,
crumpled clothing item out of a bin, flatten it, fold it,
then place it neatly on a pile.

• Dishes in sink, mobile (8 steps, 300s cutoff). Move 4
varied items from a counter into a sink.

See Figure 6 for images of tasks, and the blog post for videos. We evaluate each task and method
for 10 trials for a total of 480 episodes, adding up to 28 hours of pure robot execution time. We also
post-hoc annotate the score for each episode and the timestamp at which each step is achieved.

Baselines. We compare to the following baselines:
• Synchronous. This corresponds to the default inference strategy in prior work [5, 23, 30, 46],

which executes s = 25 actions and then pauses while the new chunk is generated.
• TE, sparse. This is similar to naive async in our simulated results; it executes s = 25 actions at

a time while computing the next chunk in parallel. We found it significantly reduced jerkiness
to also apply TE, even though only the first H − s − 2d executed steps of each chunk have
overlapping actions to ensemble.
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Figure 7: Top: Controller steps (equivalent to elapsed time with inference pauses removed multiplied by 50Hz)
vs. cumulative progress for each task, aggregated across all delays. Progress is measured in discrete steps
corresponding to the subsections of each task. Left: Time (including inference pauses) vs. cumulative progress
aggregated across all tasks. The x-axis is log scale to better show progress during both short and long-horizon
tasks. Right: Inference delay vs. average throughput, defined as the proportion of task completed divided by
duration of episode averaged over episodes. Error bars are ±1 SEM. Average throughput gives a balanced view
of both speed and performance for each method. Neither TE variant can run at +100 or +200ms of injected
latency, causing such high oscillations that the robot’s protective stop is triggered.

• TE, dense. This strategy is the closest to the original TE in Zhao et al. [67]. We run inference as
often as possible by setting smin = 1 in Algorithm 1, meaning s = d for every chunk. This results
in there always being at least 2 overlapping action chunks to ensemble, and often more.

We do not compare to BID [38] in the real world, as we found in simulation that it underperforms
RTC while using significantly more compute—when applied to π0.5with a batch size of 16, BID has
2.3 times the latency of our method (see A.3 for latency measurements).

Results. We present the results in Figure 7. In average task throughput, a measurement of both speed
and performance, RTC achieves the best score at all inference delays with a statistically significant
result at +100 and +200ms. RTC is completely robust to injected delay, showing no degradation,
whereas synchronous degrades linearly and both TE variants do not run at all due to causing such
high oscillations that the robot’s protective stop is triggered (see videos). Inspecting the per-task
results (Figure 5, top), we can conclude that RTC helps with more than just execution speed: it
completes tasks faster than synchronous inference even when inference pauses are removed. All tasks,
except for light candle, allow for retrying until the time limit (and π0.5 does, in general, exhibit robust
retrying behavior). Even though synchronous inference often reaches a similar final score, RTC often
completes more of the task earlier in the episode, reflecting fewer mistakes and less retrying. In light
candle, the most precision-sensitive task—and also the only one without retrying—RTC shows a
large advantage in final score, reflecting a higher overall success rate. Interestingly, the same is true in
bed making, even though that task does elicit retrying. The policy particularly struggles to manipulate
the pillows, and bed making is the hardest task overall, which may be why RTC has a strong effect.

6 Discussion and Future Work
Real-time chunking is an inference-time algorithm for asynchronous execution of action chunking
policies that demonstrates speed and performance across simulation and real-world experiments,
including under significant inference delays. However, this work is not without limitations: it
adds some computational overhead compared to methods that sample directly from the base policy.
Additionally, while our real-world experiments cover a variety of challenging manipulation tasks,
there are more dynamic settings that could benefit even more from real-time execution. One example
is legged locomotion, which is represented in our simulated benchmark but not our real-world results.
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Figure 8: Top left: The graph of the value 1−τ
τ ·r2τ

from Eq. 2, which we clip at β. At τ = 0, clipping is needed to
make the value finite. With 5 denoising steps, if β ≥ 4.25, the clipping only determines the guidance weight
for the first step (τ = 0). Top right: An ablation of β in our simulated benchmark. Increasing β provides
no marginal benefit beyond β = 5. Bottom left: Example real robot action chunks generated from the same
noise with 5 denoising steps (n = 5) and 100 denoising steps (n = 100), with lower opacities corresponding to
higher guidance weight clipping (β = {5, 20, 50, 150}). With 5 denoising steps, the generated action chunks
diverge when β is too high. Bottom right: β vs. maximum acceleration (second discrete difference) for a
batch of 325 action chunks generated with d = 15 and n = 5. Higher β leads to more jerkiness, a proxy for
out-of-distribution actions.

A Appendices

A.1 Broader Impacts

The goal of our work is to improve the speed and performance of learned policies for control tasks,
and our experiments primarily deal with household robots. This technology has great potential to
improve lives, e.g., by automating dangerous and difficult jobs, or assisting the disabled and elderly.
Like any technology, it also has the potential for harm—e.g., in military applications, or by displacing
physical labor.

A.2 The Necessity of Guidance Weight Clipping (β)

In Section 4.1, we describe how we adapt the inpainting algorithm from Pokle et al. [47] and Song
et al. [54] to our setting. One modification we make is to add a clipping value, β, which limits weight
applied to the guidance term (Eq. 2), and is necessary to make the weight finite at τ = 02. While
image inpainting typically uses a high number of denoising steps (e.g., n = 100 in [47]), control
problems often use very few steps (e.g., n = 5 in our experiments). In this case, we found that high
guidance weights led to diverging action chunks, as shown in Figure 8, bottom left. Based on a
simulated ablation (Figure 8, top right), we set β to a conservative value of 5.

2An alternative approach to avoid the infinite weight at τ = 0 is to start denoising from τ > 0, used in [47],
which we did not try.
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A.3 Latency Measurements

Method Latency
RTC (ours) 97ms
BID with N = 16 (no forward model) 115ms
BID with N = 16 (shared backbone) 169ms
BID with N = 16 (full) 223ms

Vanilla π0.5 76ms

Table 1: Latency measurements for various inference-time methods applied to π0.5 [23]. Numbers include
on-GPU neural network inference only, and are averaged over 10 inference calls after 5 warmup calls. Inference
runs on an NVIDIA RTX 4090 GPU using bfloat16 precision and n = 5 denoising steps. BID [38] slows
down inference due to sampling batches of actions, whereas RTC slows down inference due to backpropagating
through each denoising step. BID (no forward contrast) refers to a version of BID without the forward contrast
loss, which elides the need for a second model. BID (shared backbone) refers to a version of BID optimized
specifically for the π0 architecture, where the VLM backbone (3B parameters) is shared between the strong
and weak model, so only two copies of the action expert (300M parameters) are needed. Full BID requires two
copies of the entire model.

Component Time (mobile) Time (non-mobile)
Model 96.89 ± 0.16ms 97.43 ± 0.28ms
Network 21.20 ± 3.12ms 6.89 ± 2.39ms
Image resize 11.22 ± 5.00ms 1.44 ± 0.27ms
Other 9.67 ± 3.20ms 3.00 ± 0.68ms

Total 138.98 ± 6.71ms 108.76 ± 2.34ms

Table 2: Breakdown of total inference latency by component for RTC. The image resizing component happens on
the CPU of the robot computer. In the mobile manipulation case, this computer is an Intel NUC portable computer
with a 12th Gen Intel i7-1260P processor. In the non-mobile case, this computer is a desktop workstation with
an AMD Ryzen 9 7950X processor. In both cases, the model runs on a separate workstation with an NVIDIA
RTX 4090 GPU; the robot computer and the inference workstation are both connected to the same LAN via
a wired Ethernet connection, and communication happens via the WebSocket protocol. Model inference uses
bfloat16 precision and n = 5 denoising steps. Measurements are taken from 50 inference calls during a real
episode rollout, and ± one standard deviation is shown.

A.4 Hyperparameters

Hyperparameter Description Simulation Real-world
n Denoising steps 5 5
H Prediction horizon 8 50
smin Minimum execution horizon - 25
β Guidance weight clipping 5 5
b Delay buffer size - 10

Table 3: Hyperparameters used for RTC (Algorithm 1). In simulation, d is held constant for each experiment, so
smin and b are not needed. Additional hyperparameters for the simulated experiments can be found in the code.

A.5 Code Release

The code for the simulated experiments is available at https://github.com/
Physical-Intelligence/real-time-chunking-kinetix.
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A.6 Compute Resources

All the experiments in this work use no more than 8 NVIDIA H100 GPUs (one NVIDIA DGX server)
at a time. H100s are used via a cloud provider.

Simulated experiments. Training expert policies with RPO [49] with 6 seeds × 12 environments
takes approximately 4 hours on 4xH100s. Generating data from those policies takes approximately 20
minutes on 6xH100s. Training imitation learning policies with flow matching for each environment
takes approximately 1.5 hours on 2xH100s. Evaluating the policies for 2048 trials per environment
takes approximately 5 minutes on 6xH100s.

Real-world experiments. We use policies fine-tuned from the π0.5 [23] base model. Each fine-tuning
run takes approximately 24 hours on 8xH100s. All of our real-world inference is done on a single
NVIDIA RTX 4090 GPU in a workstation in the same building as the robots.
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